The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre.
نویسندگان
چکیده
The SOR (sulphur oxygenase reductase) is the initial enzyme in the sulphur-oxidation pathway of Acidianus ambivalens. Expression of the sor gene in Escherichia coli resulted in active, soluble SOR and in inclusion bodies from which active SOR could be refolded as long as ferric ions were present in the refolding solution. Wild-type, recombinant and refolded SOR possessed indistinguishable properties. Conformational stability studies showed that the apparent unfolding free energy in water is approx. 5 kcal x mol(-1) (1 kcal=4.184 kJ), at pH 7. The analysis of the quaternary structures showed a ball-shaped assembly with a central hollow core probably consisting of 24 subunits in a 432 symmetry. The subunits form homodimers as the building blocks of the holoenzyme. Iron was found in the wild-type enzyme at a stoichiometry of one iron atom/subunit. EPR spectroscopy of the colourless SOR resulted in a single isotropic signal at g=4.3, characteristic of high-spin ferric iron. The signal disappeared upon reduction with dithionite or incubation with sulphur at elevated temperature. Thus both EPR and chemical analysis indicate the presence of a mononuclear iron centre, which has a reduction potential of -268 mV at pH 6.5. Protein database inspection identified four SOR protein homologues, but no other significant similarities. The spectroscopic data and the sequence comparison led to the proposal that the Acidianus ambivalens SOR typifies a new type of non-haem iron enzyme containing a mononuclear iron centre co-ordinated by carboxylate and/or histidine ligands.
منابع مشابه
X-ray Structure of a self-compartmentalizing sulfur cycle metalloenzyme.
Numerous microorganisms oxidize sulfur for energy conservation and contribute to the global biogeochemical sulfur cycle. We have determined the 1.7 angstrom-resolution structure of the sulfur oxygenase reductase from the thermoacidophilic archaeon Acidianus ambivalens, which catalyzes an oxygen-dependent disproportionation of elemental sulfur. Twenty-four monomers form a large hollow sphere enc...
متن کاملSubstrate Pathways and Mechanisms of Inhibition in the Sulfur Oxygenase Reductase of Acidianus Ambivalens
BACKGROUND The sulfur oxygenase reductase (SOR) is the initial enzyme of the sulfur oxidation pathway in the thermoacidophilic Archaeon Acidianus ambivalens. The SOR catalyzes an oxygen-dependent sulfur disproportionation to H(2)S, sulfite and thiosulfate. The spherical, hollow, cytoplasmic enzyme is composed of 24 identical subunits with an active site pocket each comprising a mononuclear non-...
متن کاملCrystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis.
Sulfur oxygenase reductase (SOR) simultaneously catalyzes oxidation and reduction of elemental sulfur to produce sulfite, thiosulfate, and sulfide in the presence of molecular oxygen. In this study, crystal structures of wild type and mutants of SOR from Acidianus tengchongensis (SOR-AT) in two different crystal forms were determined and it was observed that 24 identical SOR monomers form a hol...
متن کاملMembrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens.
A sulfur reductase (SR) and a hydrogenase were purified from solubilized membrane fractions of anaerobically grown cells of the sulfur-dependent archaeon Acidianus ambivalens and the corresponding genes were sequenced. The SR reduced elemental sulfur with hydrogen as electron donor [45 U (mg protein)(-1)] in the presence of hydrogenase and either 2,3-dimethylnaphthoquinone (DMN) or cytochrome c...
متن کاملA Rieske ferredoxin typifying a subtype within Rieske proteins: spectroscopic, biochemical and stability studies.
A new subtype of archaeal Rieske ferredoxin (RFd) has been identified in the genome of the thermoacidophilic archaeon Acidianus ambivalens. The gene is inserted in an atypical genomic context in a gene cluster encoding a NiFe hydrogenase. Sequence and phyletic analysis showed that the protein is related to bacterial RFd but not to any of the known archaeal Rieske proteins. The recombinant 14 kD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 381 Pt 1 شماره
صفحات -
تاریخ انتشار 2004